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ENANTIOSELECTIVE SYNTHESIS OF (+)-(2S,3S)-3-ETHYNYLTYROSINE
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Summary: Homochiral ethynyl tyrosine 2, designed as a potential dopamine
B-hydroxylase frreversible inhibitor prodrug, has been synthesised asymmetrically in
15-steps, using the alkylation and azidation of acylated oxazolidones to establish

relative and absolute stereochemistry.
25-Ethynyltyramine 1 1s a high affinity mechanism-based inhibitor of dopamine B-

hydroxylase (DBH).2 As a means of enhancing the in vivo pharmacological profile of
1, ethynyltyrosine 2 was designed as a potential dual enzyme-activated irreversible
1nhib1tor3 of DBH. Active amino acid transport of 2 into cells and the subsequent
action of aromatic L-amino actd decarboxylase (AADC)4 was envisaged to deliver 1 to
target organelles.2 In this Letter we describe the enantioselective synthesis of
(+)-2. The stereocenters at C(3) and C(2) are introduced via asymmetric alkylation

and azidation reactions, using Evans' chiral oxazolidones as stereocontro”ers.s‘6
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The synthesis of (+)-2 was initiated upon coupling aryl acetic acid 37 with
(+)-(4R,55)-4-methy1-5-phenyloxazolidone to give the N-acylated derivative 453'8

(Scheme 1). Alkylation of the sodium enolate of 4 with freshly distilled allyl
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bromide <(1.1 equiv. NaHMDS, -78 °C, 15 min; 5 equiv. CHZ-CHCHZBr, -50 °C, 1h)
furnished oxazolidone 5 in 90% yield.5b The alkylated product contained ca. 8% (200
MHz 'H NMR analysts) of the unwanted diastereomer which was inseparable by
chromatography and was conveniently removed later in the synthesis. Subsequent removal
of the chiral auxiliary (LAH, THF, O °C, 30 min) gave alcohol 6 which was converted to
the enyne 7 using Corey's procedure:9 1) Swern oxidation, 2) Wittig condensation

with Ph,P=CBr, (2 equiv.) and 3) treatment with {~BulLi (2 equiv.) and Me351C1

3 2
(1.5 equiv., 69% overall). Selective ozonolysis of 7 in CHZCI2 (-78 °C) using
Sudan 78 as an Ind'lcator]0 and reductive work up with PhaP produced aldehyde 8.
Further oxidation of 8 with NaClO2 in aqueous 1—Bu0Hl] gave the known acid 9
(ladp® -16.2° (c 1.5, OMF) (11t.2 (a12® -19.4° (c 1.5, DMF)). The
magnitude of [«13® for synthetic 9 implled an ee of 84% indicating that ca. 5%
racemization at C(3) occurred during the 6*7 transformation while the (-) sign of
[a]gs confirmed the stereochemistry at C(3) as 5.2

Introduction of the amine functionality present in 2 was accomplished via an

azidation/reduction sequence. Accordingly, oxazolidone 10 derived from 9 and
(-)-(4S,5R)~-4-methyl-5-phenyloxazolidone was subjected to electrophilic azidation as
described by Evans.5c Thus a solution of 10 (0.25 M in THF) was cooled to -100 °C
and treated with KHMDS (1.1 equiv., 30 min) followed by the addition of a precooled (-78
°C) solution of 2,4,6~triisopropylbenzenesulfonyl azide (3 equiv. THF). The reaction
was stirred at -78 °C for 5 min and then quenched with AcOH (5 equiv., -78 °C + 30 °C,
1 h). Extractive workup and chromatography afforded azide 11 in 50% yield (80% de).
The use of alternative bases or sulfonyl azides did not improve the yield. Following
conversion of 11 to azido ester 12 (three steps: 1) peroxide mediated hydrolysis of
the acyl oxaondone,SC'd 2) removal of the Me3$1 protecting group and 3)
esterification), azide reduction was accomplished efficiently using Ph3P (2 equiv. in
aqueous THF, reflux, 3 h),]2 procuring amine 13. Tyrosine ester 14 ([u155=
+30.4° (c 1.1, HZO)) was obtained as a single diastereomer in 30% yield upon removal
of the PMB protecting group from 13 (1 M methanolic HC1, 25 °C, 12 h) and two
vecrystallizations of the phenol from MeOH-—EtZO (l:l).]3 Final hydrolysis of 14
(3 M aqueous HC1 at 60°C, 24 h) completed the preparation of enantiomerically pure

(+)-2, (]2 +29.0° (c 0.5, 1 M aq HCD).
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( Reagents and conditions: a) i) 1-BuCOCI, EtzN,THF, 0°C; ii) Li salt of (4R,58)-4-melhyl-5-phenﬁ
oxazolidone, 0°C; b) i) 1.1 equiv. NaHMDS, 30 min, THF,-78°C; ii} 5 equiv. allyl bromide, -50°C;
c) LAH, THF, 0°C; d) i) (COCl)z, DMSO, CHxCly, -78°C ii) Et3N; e) 2 equiv. CBry, 4 equiv. PPhg,
CH,Cly,; ) i) 2.1 equiv. {-Buli, -78°C, 30min, to 20°C, 1h, ii) 1.2 equiv. TMSCI; g) i) Os, sudan
red 7B, CH2Cly, -78°C, ii) 2 equiv. PPhg; h) 9 equiv. NaClO,, NaH,PO4, aq 1-BuOH, 2-methyl-2-
butene; j) i) 1-BuCOCI, EtgN, THF, 0°C, ii) Li salt of (45,5R)-4-methyi-5-phenyloxazolidone, 0°C;
k) i)1.05 equiv. KHMDS, -100°C, THF, 30 min, ii) 3 equiv. 2,4,6-tri-isopropylbenzenesulphonyl
azide, -78°C, 5 min; iii) 5 equiv. ACOH, -78°C to 30°C; ) i) 2 equiv. LiOH, 4 equiv. H0,, aq THF|

0°C; ii) K2CO3, aq MeOH; iii) 1.2 equiv. KzCOj3, 1.2 equiv. Mel, DMF; m) 2 equiv. PPhy, aq THF,
reflux; n) HCI, MeOH, then recrystallisation (MeOH: Etz0); o) 25% aq HCI, 60°C, then pyridine. J
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